专项训练六圆一、选择题1.如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是()A.相离B.相交C.相切D.均有可能第1题图第3题图第4题图2.(2016·贺州中考)已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A.2B.4C.6D.83.(2016·兰州中考)如图,在⊙O中,若点C是AB的中点,∠A=50°,则∠BOC的度数为()A.40°B.45°C.50°D.60°4.(2016·杭州中考)如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EBB.DE=EBC.DE=DOD.DE=OB第5题图第6题图第7题图5.如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A.60°B.120°C.60°或120°D.30°或150°6.(2016·德州中考)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步B.5步C.6步D.8步7.(2016·山西中考)如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则FE的长为()A.B.C.πD.2π8.(2016·滨州中考)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤第8题图第9题图第10题图二、填空题9.(2016·安顺中考)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=________.10.(2016·齐齐哈尔中考)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=________度.11.(2016·贵港中考)如图,在Rt△ABC中,∠C=90°,∠BAC=60°,将△ABC绕点A逆时针旋转60°后得到△ADE.若AC=1,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是________(结果保留π).12.(2016·呼和浩特中考)在周长为26π的⊙O中,CD是⊙O的一条弦,AB是⊙O的切线,且AB∥CD,若AB和CD之间的距离为18,则弦CD的长为________.13.(2016·成都中考)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=________.第11题图第13题图第14题图14.如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在AB上,CD⊥OA,垂足为D,当△OCD的面积最大时,AC的长为________.三、解答题15.(2016·宁夏中考)如图,已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.16.(2016·新疆中考)如图,在⊙O中,半径OA⊥OB,过OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作弧CE,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.17.(2016·西宁中考)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,=,求BE的长.18.★如图,在平面直角坐标系xOy中,直线y=x-2与x轴、y轴分别交于A,B两点,P是直线AB上一动点,⊙P的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与x轴相切时,求出切点的坐标.参考答案与解析1.C2.D3.A4.D5.C6.C解析:根据勾股定理得斜边为=17,则该直角三角形能容纳的圆形(内切圆)半径r==3(步),即直径为6步.7.C解析:连接OE、OF. CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°. 四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°. OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°-∠D-∠DFO-∠DEO=30°,∴FE的长==π.8.D解析:① AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∴①正确;② ∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角,∴∠AOC≠∠AEC,∴...